
1

COMPUTER SCIENCE DEPARTMENT FACULTY OF
ENGINEERING AND TECHNOLOGY

ADVANCED PROGRAMMING COMP2311
Instructor :Murad Njoum
Office : Masri322

Chapter 13 Abstract Classes and Interfaces

Abstract Classes and Methods

ü An abstract class is a class that is declared with abstract keyword.
ü An abstract method is a method that is declared without an

implementation.
ü An abstract class may or may not have all abstract methods. Some

of them can be concrete methods
ü A method defined abstract must always be redefined in the

subclass, thus making overriding compulsory(it must) OR either
make subclass itself abstract.

Instructor :Murad Njoum

https://www.geeksforgeeks.org/abstract-keyword-in-java/
http://contribute.geeksforgeeks.org/overriding-in-java/

ü Any class that contains one or more abstract methods
must also be declared with abstract keyword.

ü There can be no object of an abstract class. That is, an
abstract class can not be directly instantiated with the
new operator.

ü An abstract class can have parametrized constructors and
default constructor is always present in an abstract class.

There are situations in which we will want to define a superclass that declares the structure of a
given abstraction without providing a complete implementation of every method. That is,
sometimes we will want to create a superclass that only defines a generalization form that will
be shared by all of its subclasses, leaving it to each subclass to fill in the details.

Instructor :Murad Njoum

https://www.geeksforgeeks.org/new-operator-java/

Instructor :Murad Njoum

abstract class Shape
{

String color;

// these are abstract methods
abstract double area();
public abstract String toString();

// abstract class can have constructor
public Shape(String color) {

System.out.println("Shape constructor called");
this.color = color;

}

// this is a concrete method
public String getColor() {

return color;
}

}

class Circle extends Shape
{

double radius;

public Circle(String color,double radius) {

// calling Shape constructor
super(color);
System.out.println("Circle constructor called");
this.radius = radius;

}

@Override
double area() {

return Math.PI * Math.pow(radius, 2);
}

@Override
public String toString() {

return "Circle color is " + super.color +
"and area is : " + area();

}

} Instructor :Murad Njoum

class Rectangle extends Shape{
double length;

double width;

public Rectangle(String color,double length,double width) {
// calling Shape constructor
super(color);
System.out.println("Rectangle constructor called");
this.length = length;
this.width = width;

}

@Override
double area() {

return length*width;
}

@Override
public String toString() {

return "Rectangle color is " + super.color +
"and area is : " + area();

}

}

public class Test
{

public static void main(String[] args)
{

Shape s1 = new Circle("Red", 2.2);
Shape s2 = new Rectangle("Yellow", 2, 4);

System.out.println(s1.toString());
System.out.println(s2.toString());

}
}

Shape constructor called
Circle constructor called
Shape constructor called
Rectangle constructor called
Circle color is Red and area is : 15.205308443374602
Rectangle color is Yellow and area is : 8.0

Instructor :Murad Njoum

Abstract Classes and Abstract Methods

7

Run

GeometricObject

Circle

Rectangle

TestGeometricObject

Instructor :Murad Njoum

Encapsulation vs Data Abstraction
1.Encapsulation is data hiding (information hiding) while Abstraction is detail
hiding(implementation hiding).
2.While encapsulation groups together data and methods that act upon the
data, data abstraction deals with exposing the interface to the user and
hiding the details of implementation.

Advantages of Abstraction
1.It reduces the complexity of viewing the things.
2.Avoids code duplication and increases reusability.
3.Helps to increase security of an application or program as only important
details are provided to the user.

Instructor :Murad Njoum

http://contribute.geeksforgeeks.org/encapsulation-in-java/

abstract method in abstract class

9

ü An abstract method cannot be contained in a non abstract class.

ü If a subclass of an abstract superclass does not implement all the
abstract methods, the subclass must be defined abstract.

ü In other words, in a non abstract subclass extended from an
abstract class, all the abstract methods must be implemented,
even if they are not used in the subclass.

Instructor :Murad Njoum

object cannot be created from abstract class

10

An abstract class cannot be instantiated using the new
operator, but you can still define its constructors, which
are invoked in the constructors of its subclasses. For
instance, the constructors of GeometricObject are invoked
in the Circle class and the Rectangle class.

Instructor :Murad Njoum

abstract class without abstract method

11

A class that contains abstract methods must be abstract.
However, it is possible to define an abstract class that
contains no abstract methods.

In this case, you cannot create instances of the class
using the new operator. This class is used as a base class
for defining a new subclass.

Instructor :Murad Njoum

superclass of abstract class may be concrete

12

A subclass can be abstract even if its superclass is
concrete. For example, the Object class is concrete, but
its subclasses, such as GeometricObject, may be abstract.

Instructor :Murad Njoum

concrete method overridden to be abstract

13

A subclass can override a method from its superclass to
define it abstract. This is rare, but useful when the
implementation of the method in the superclass becomes
invalid in the subclass. In this case, the subclass must be
defined abstract. class A{

public int methodX(){….}
}

class B extends A{
@override

public int methodX(){….}
}

This class must be defined as abstract if you
want to hide implementation of method in

superclass (A)

Instructor :Murad Njoum

abstract class as type

14

You cannot create an instance from an abstract class
using the new operator, but an abstract class can be
used as a data type. Therefore, the following
statement, which creates an array whose elements are
of GeometricObject type, is correct.
GeometricObject[] geo = new GeometricObject[10];

Instructor :Murad Njoum

Instructor :Murad Njoum

Case Study: the Abstract Number Class

16

RunLargestNumbers

Instructor :Murad Njoum

The Abstract Calendar Class and Its
GregorianCalendar subclass

17Instructor :Murad Njoum

The Abstract Calendar Class and Its
GregorianCalendar subclass

vAn instance of java.util.Date represents a specific instant in time with
millisecond precision.

v java.util.Calendar is an abstract base class for extracting detailed
information such as year, month, date, hour, minute and second from a
Date object.

v Subclasses of Calendar can implement specific calendar systems such as
Gregorian calendar, Lunar Calendar and Jewish calendar.

vCurrently, java.util.GregorianCalendar for the Gregorian calendar is
supported in the Java API.

18Instructor :Murad Njoum

The GregorianCalendar Class

üYou can use new GregorianCalendar() to construct a default
GregorianCalendar with the current time

üuse new GregorianCalendar(year, month, date) to construct a
GregorianCalendar with the specified year, month, and date.

üThe month parameter is 0-based, i.e., 0 is for January.

19Instructor :Murad Njoum

The get Method in Calendar Class
The get(int field) method defined in the Calendar class is useful to
extract the date and time information from a Calendar object. The
fields are defined as constants, as shown in the following.

20Instructor :Murad Njoum

21

import java.util.*;

public class TestCalendar {
public static void main(String[] args) {
// Construct a Gregorian calendar for the current date and time
Calendar calendar = new GregorianCalendar();

System.out.println("Current time is " + new Date());
System.out.println("YEAR: " + calendar.get(Calendar.YEAR));
System.out.println("MONTH: " + calendar.get(Calendar.MONTH));
System.out.println("DATE: " + calendar.get(Calendar.DATE));
System.out.println("HOUR: " + calendar.get(Calendar.HOUR));
System.out.println("HOUR_OF_DAY: " +
calendar.get(Calendar.HOUR_OF_DAY));

System.out.println("MINUTE: " + calendar.get(Calendar.MINUTE));
System.out.println("SECOND: " + calendar.get(Calendar.SECOND));
System.out.println("DAY_OF_WEEK: " +
calendar.get(Calendar.DAY_OF_WEEK));

Instructor :Murad Njoum

System.out.println("DAY_OF_MONTH: " +
calendar.get(Calendar.DAY_OF_MONTH));

System.out.println("DAY_OF_YEAR: " +
calendar.get(Calendar.DAY_OF_YEAR));

System.out.println("WEEK_OF_MONTH: " +
calendar.get(Calendar.WEEK_OF_MONTH));

System.out.println("WEEK_OF_YEAR: " +
calendar.get(Calendar.WEEK_OF_YEAR));

System.out.println("AM_PM: " + calendar.get(Calendar.AM_PM));

// Construct a calendar for December 25, 1997
Calendar calendar1 = new GregorianCalendar(1997, 11, 25);
String[] dayNameOfWeek = {"Sunday", "Monday", "Tuesday",

"Wednesday",
"Thursday", "Friday", "Saturday"};

System.out.println("December 25, 1997 is a " +
dayNameOfWeek[calendar1.get(Calendar.DAY_OF_WEEK) - 1]);

}
}

Current time is Sun Apr 07 21:59:21 IDT 2019
YEAR: 2019
MONTH: 3 (month 4)
DATE: 7
HOUR: 9
HOUR_OF_DAY: 21
MINUTE: 59
SECOND: 21
DAY_OF_WEEK: 1 (Sunday) , (Saturday :7)
DAY_OF_MONTH: 7 (Date)
DAY_OF_YEAR: 97 (from beginning of year)
WEEK_OF_MONTH: 2 (second week of month)
WEEK_OF_YEAR: 15 (#week from beginning of year)
AM_PM: 1
December 25, 1997 is a Thursday

Instructor :Murad Njoum

Java and Multiple Inheritance

v Multiple Inheritance is a feature of object oriented concept, where
a class can inherit properties of more than one parent class.

v The problem occurs when there exist methods with same signature
in both the super classes and subclass.

v On calling the method, the compiler cannot determine which class
method to be called and even on calling which class method gets
the priority

Instructor :Murad Njoum

Does Java support Multiple Inheritance?
// First Parent class
class Parent1
{

void fun()
{

System.out.println("Parent1");
}

}

// Second Parent Class
class Parent2
{

void fun()
{

System.out.println("Parent2");
}

}

// Test is inheriting from multiple
// classes
class Test extends Parent1, Parent2
{
public static void main(String args[])
{

Test t = new Test();
t.fun();

}
}

Compiler Error

Class A Class B

Class C

class C extends A, B { …. }Instructor :Murad Njoum

The Diamond Problem:
GrandParent

/ \
/ \

Parent1 Parent2
\ /
\ /
Test

// A Grand parent class in diamond
class GrandParent
{

void fun()
{

System.out.println("Grandparent");
}

}

// First Parent class
class Parent1 extends GrandParent
{

void fun()
{

System.out.println("Parent1");
}

}

// Second Parent Class
class Parent2 extends GrandParent
{

void fun()
{

System.out.println("Parent2");
}

}

// Error : Test is inheriting from multiple
// classes
class Test extends Parent1, Parent2
{
public static void main(String args[])
{

Test t = new Test();
t.fun();

}
}

Instructor :Murad Njoum

Simplicity –
• Multiple inheritance is not supported by Java using classes ,

handling the complexity that causes due to multiple
inheritance is very complex.

• It creates problem during various operations like casting,
constructor chaining etc and the above all reason is that
there are very few scenarios on which we actually need
multiple inheritance, so better to omit it for keeping the
things simple and straightforward.

Instructor :Murad Njoum

How are above problems handled for Default Methods and Interfaces ?

v Java 8 supports default methods where interfaces can provide
default implementation of methods.

v And a class can implement two or more interfaces.

v In case both the implemented interfaces contain default methods
with same method signature, the implementing class should
explicitly specify which default method is to be used or it should
override the default method.

Instructor :Murad Njoum

https://www.geeksforgeeks.org/default-methods-java/

Interfaces

28

• An interface is a way to describe what classes should
do, without specifying how they should do it.

• It is not a class but a set of requirements for classes
that want to conform to the interface.

Instructor :Murad Njoum

What is an interface?
Why is an interface useful?

An interface is a class like construct that contains only constants
and abstract methods.
In many ways, an interface is similar to an abstract class, but the

intent of an interface is to specify common behavior for objects.
For example, you can specify that the objects are comparable,

edible, cloneable using appropriate interfaces.

29Instructor :Murad Njoum

Define an Interface
To distinguish an interface from a class, Java uses the following syntax to define
an interface:

30

public interface InterfaceName {
constant declarations;
abstract method signatures;

}

Example:

public interface Edible {
/** Describe how to eat */
public abstract String howToEat();

}
Instructor :Murad Njoum

Interface is a Special Class

ØAn interface is treated like a special class in Java.
ØEach interface is compiled into a separate bytecode file, just

like a regular class.
ØLike an abstract class, you cannot create an instance from an

interface using the new operator, but in most cases you can
use an interface more or less the same way you use an
abstract class.

ØFor example, you can use an interface as a data type for a
variable, as the result of casting, and so on.

31Instructor :Murad Njoum

Example
You can now use the Edible interface to specify whether an
object is edible. This is accomplished by letting the class for
the object implement this interface using the implements
keyword. For example, the classes Chicken and Fruit
implement the Edible interface (See TestEdible).

32

RunTestEdibleEdible

Instructor :Murad Njoum

Omitting Modifiers in Interfaces

All data fields are public final static and all methods are public
abstract in an interface. For this reason, these modifiers can be
omitted, as shown below:

33

 public interface T1 {
 public static final int K = 1;

 public abstract void p();
}

Equivalent
public interface T1 {
 int K = 1;

 void p();
}

A constant defined in an interface can be accessed using syntax
InterfaceName.CONSTANT_NAME (e.g., T1.K).

Instructor :Murad Njoum

Note: Data members means static data fields or static methods

Abstract class Interface
1) Abstract class can have abstract and non-abstract
methods.

Interface can have only abstract methods. Since Java 8, it
can have default and static methods also.
Default (means abstract) and static you have to implement

2) Abstract class doesn't support multiple inheritance. Interface supports multiple inheritance.

3) Abstract class can have final, non-final, static and
non-static variables.

Interface has only static and final variables.
By default (final, static)

4) Abstract class can provide the implementation of
interface.

Interface can't provide the implementation of abstract
class.

5) The abstract keyword is used to declare abstract class. The interface keyword is used to declare interface.

6) An abstract class can extend another Java class and
implement multiple Java interfaces.

An interface can extend another Java interface only.

7) An abstract class can be extended using keyword
"extends".

An interface class can be implemented using keyword
"implements".

8) A Java abstract class can have class members like
private, protected, etc.

Members of a Java interface are public by default.

9)Example:
public abstract class Shape{
public abstract void draw();
}

Example:
public interface Drawable{
void draw();
}

Instructor :Murad Njoum

public interface testInterface {
int x=5; //by default it’s public static final
public static int methodX() {return 0;}
int X(); //by default it’s abstracted method
}

public class testinter implements testInterface {

public static void main(String[] args) {

System.out.print(testInterface.methodX());
//output is zero

}

public int X() {
// just test override method of interface
return 0;
}
}

Instructor :Murad Njoum

Example: The Comparable Interface

// This interface is defined in
// java.lang package
package java.lang;

public interface Comparable<E> {
public int compareTo(E o);

}

36Instructor :Murad Njoum

Example

37

1 System.out.println(new Integer(3).compareTo(new Integer(5)));
2 System.out.println("ABC".compareTo("ABE"));
3 java.util.Date date1 = new java.util.Date(2013, 1, 1);
4 java.util.Date date2 = new java.util.Date(2012, 1, 1);
5 System.out.println(date1.compareTo(date2));

Instructor :Murad Njoum

The toString, equals, and hashCode Methods

üEach wrapper class overrides the toString, equals,
and hashCode methods defined in the Object class.

üSince all the numeric wrapper classes and the
Character class implement the Comparable
interface, the compareTo method is implemented in
these classes.

38Instructor :Murad Njoum

Integer and BigInteger Classes

39

 public class Integer extends Number
 implements Comparable<Integer> {
 // class body omitted

 @Override
 public int compareTo(Integer o) {
 // Implementation omitted
 }

}

public class BigInteger extends Number
 implements Comparable<BigInteger> {
 // class body omitted

 @Override
 public int compareTo(BigInteger o) {
 // Implementation omitted
 }

}

 public class String extends Object
 implements Comparable<String> {
 // class body omitted

 @Override
 public int compareTo(String o) {
 // Implementation omitted
 }

}

public class Date extends Object
 implements Comparable<Date> {
 // class body omitted

 @Override
 public int compareTo(Date o) {
 // Implementation omitted
 }

}

String and Date Classes

Instructor :Murad Njoum

Generic sort Method
Let n be an Integer object, s be a String object, and d be a
Date object. All the following expressions are true.

40

 s instanceof String
s instanceof Object
s instanceof Comparable

d instanceof java.util.Date
d instanceof Object
d instanceof Comparable

n instanceof Integer
n instanceof Object
n instanceof Comparable

The java.util.Arrays.sort(array) method requires that the
elements in an array are instances of Comparable<E>.

RunSortComparableObjects

Instructor :Murad Njoum

Defining Classes to Implement Comparable

41

ComparableRectangle RunSortRectangles

Instructor :Murad Njoum

public class ComparableRectangle extends Rectangle
implements Comparable<ComparableRectangle> {

/** Construct a ComparableRectangle with specified properties */
public ComparableRectangle(double width, double height) {
super(width, height);

}

@Override // Implement the compareTo method defined in Comparable
public int compareTo(ComparableRectangle o) {
if (getArea() > o.getArea())
return 1;

else if (getArea() < o.getArea())
return -1;

else
return 0;

}

@Override // Implement the toString method in GeometricObject
public String toString() {
return "Width: " + getWidth() + " Height: " + getHeight() +
" Area: " + getArea();

}
} Instructor :Murad Njoum

public class SortRectangles {
public static void main(String[] args) {

ComparableRectangle[] rectangles = {
new ComparableRectangle(3.4, 5.4),
new ComparableRectangle(13.24, 55.4),
new ComparableRectangle(7.4, 35.4),
new ComparableRectangle(1.4, 25.4)};

java.util.Arrays.sort(rectangles);
for (Rectangle rectangle: rectangles) {

System.out.print(rectangle + " ");
System.out.println();

}
}

}

Instructor :Murad Njoum

The Cloneable Interfaces

package java.lang;
public interface Cloneable {
}

44

q Marker Interface: An empty interface.

q A marker interface does not contain constants or methods.

q It is used to denote that a class possesses certain desirable
properties.

q A class that implements the Cloneable interface is marked
cloneable, and its objects can be cloned using the clone()
method defined in the Object class.

Instructor :Murad Njoum

Examples

Many classes (e.g., Date and Calendar) in the Java library implement Cloneable. Thus, the
instances of these classes can be cloned. For example, the following code

Calendar calendar = new GregorianCalendar(2003, 2, 1);
Calendar calendarCopy = (Calendar)calendar.clone();

System.out.println("calendar == calendarCopy is " +
(calendar == calendarCopy));

System.out.println("calendar.equals(calendarCopy) is " +
calendar.equals(calendarCopy));

displays
calendar == calendarCopy is false
calendar.equals(calendarCopy) is true

45Instructor :Murad Njoum

Implementing Cloneable Interface

To define a custom class that implements the Cloneable interface, the class
must override the clone() method in the Object class. The following code
defines a class named House that implements Cloneable and Comparable.

46Instructor :Murad Njoum

public class House implements Cloneable,
Comparable<House> {
private int id;
private double area;
private java.util.Date whenBuilt;

public House(int id, double area) {
this.id = id;
this.area = area;
whenBuilt = new java.util.Date();

}

public int getId() {
return id;

}

public double getArea() {
return area;

}

public java.util.Date getWhenBuilt() {
return whenBuilt;

}

@Override /** Override the protected clone
method defined in the Object class, and
strengthen its accessibility */
public Object clone() {
try {
return super.clone();

}
catch (CloneNotSupportedException ex) {
return null;

}
}

@Override // Implement the compareTo method
defined in Comparable
public int compareTo(House o) {
if (area > o.area)
return 1;

else if (area < o.area)
return -1;

else
return 0;

}
}

Instructor :Murad Njoum

Shallow vs. Deep Copy

48

House house1 = new House(1, 1750.50);

House house2 = (House)house1.clone();

Shallow
Copy

Instructor :Murad Njoum

Shallow vs. Deep Copy

49

House house1 = new House(1, 1750.50);

House house2 = (House)house1.clone();

Deep
Copy

Instructor :Murad Njoum

The default version of clone() method creates the shallow copy of an object.

The shallow copy of an object will have exact copy of all the fields of original object

If original object has any references to other objects as fields, then only references of
those objects are copied into clone object, copy of those objects are not created.

That means any changes made to those objects through clone object will be reflected in
original object or vice-versa. Shallow copy is not 100% disjoint from original object. Shallow
copy is not 100% independent of original object.

Deep copy of an object will have exact copy of all the fields of original object just like
shallow copy.

But in additional, if original object has any references to other objects as fields, then copy of those
objects are also created by calling clone() method on them. That means clone object and
original object will be 100% disjoint.

They will be 100% independent of each other. Any changes made to clone object will not be
reflected in original object or vice-versa.

Instructor :Murad Njoum

Instructor :Murad Njoum

class Course
{

String subject1;
String subject2;
String subject3;

public Course(String sub1, String sub2, String sub3)
{

this.subject1 = sub1;
this.subject2 = sub2;
this.subject3 = sub3;

}
}

class Student implements Cloneable
{

int id;
String name;
Course course;

public Student(int id, String name, Course course)
{

this.id = id;
this.name = name;
this.course = course;

}

//Default version of clone() method. It creates shallow copy of an object.

protected Object clone() throws CloneNotSupportedException
{

return super.clone();
}

}

public class ShallowCopyInJava
{

public static void main(String[] args)
{

Course science = new Course("Physics", "Chemistry",
"Biology");

Student student1 = new Student(111, "John",
science);

Student student2 = null;

try
{

//Creating a clone of student1 and assigning it
to student2

student2 = (Student) student1.clone();
}
catch (CloneNotSupportedException e)
{

e.printStackTrace();
}

//Printing the subject3 of 'student1'

System.out.println(student1.course.subject3);
//Output : Biology

//Changing the subject3 of 'student2'
student2.course.subject3 = "Maths";
//This change will be reflected in original student

'student1'

System.out.println(student1.course.subject3); /
/Output : Maths

}
}Instructor :Murad Njoum

class Course implements Cloneable
{

String subject1;
String subject2;
String subject3;

public Course(String sub1, String sub2, String sub3)
{

this.subject1 = sub1;
this.subject2 = sub2;
this.subject3 = sub3;

}

protected Object clone() throws
CloneNotSupportedException

{
return super.clone();

}
}

class Student implements Cloneable
{ int id;

String name;
Course course;

public Student(int id, String name, Course course)
{ this.id = id;

this.name = name;
this.course = course; }

//Overriding clone() method to create a deep copy of an
object.

protected Object clone() throws
CloneNotSupportedException

{
Student student = (Student) super.clone();
student.course = (Course) course.clone();

return student; }
}

public class DeepCopyInJava
{

public static void main(String[] args)
{

Course science = new Course("Physics", "Chemistry",
"Biology");

Student student1 = new Student(111, "John", science);

Student student2 = null;

try
{

//Creating a clone of student1 and assigning it to
student2

student2 = (Student) student1.clone();
}
catch (CloneNotSupportedException e)
{

e.printStackTrace();
}

//Printing the subject3 of 'student1'

System.out.println(student1.course.subject3); //Output
: Biology

//Changing the subject3 of 'student2'

student2.course.subject3 = "Maths";

//This change will not be reflected in original student
'student1'

System.out.println(student1.course.subject3); //Output :
Biology

}
}

Instructor :Murad Njoum

Interfaces vs. Abstract Classes

In an interface, the data must be constants; an abstract class can
have all types of data.

Each method in an interface has only a signature without
implementation; an abstract class can have concrete methods.

54Instructor :Murad Njoum

Interfaces vs. Abstract Classes, cont.

Suppose that c is an instance of Class2. c is also an instance of Object, Class1, Interface1, Interface1_1,
Interface1_2, Interface2_1, and Interface2_2. 55

Ø All classes share a single root, the Object class, but there is no single root for
interfaces. Like a class, an interface also defines a type.

Ø A variable of an interface type can reference any instance of the class that
implements the interface.

Ø If a class extends an interface, this interface plays the same role as a superclass.
You can use an interface as a data type and cast a variable of an interface
type to its subclass, and vice versa.

Instructor :Murad Njoum

Instructor :Murad Njoum

